| HOME | BESTSELLERS | NEW RELEASES | PRICE WATCH | FICTION | BIOGRAPHIES | E-BOOKS |
+ PRICE WATCH
* Amazon pricing is not included in price watch
Learning Kernel Classifiers: Theory and Algorithms (Adaptive Computation and Machine Learning) Book
Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.Read More
from£N/A | RRP: * Excludes Voucher Code Discount Also available Used from £N/A
- 026208306X
- 9780262083065
- R Herbrich
- 22 January 2002
- MIT Press
- Hardcover (Book)
- 384
As an Amazon Associate we earn from qualifying purchases. If you click through any of the links below and make a purchase we may earn a small commission (at no extra cost to you). Click here to learn more.
Would you like your name to appear with the review?
We will post your book review within a day or so as long as it meets our guidelines and terms and conditions. All reviews submitted become the licensed property of www.find-book.co.uk as written in our terms and conditions. None of your personal details will be passed on to any other third party.
All form fields are required.

